4. Электроника в быту
4.1. Электрический способ борьбы с крысами и мышами
Многие, у кого имеется погреб или подвал с хранящимися зимой продуктами, с огорчением вспоминают ущерб, причиняемый грызунами. Не съедят, так покусают и испортят. Кроме того, они являются разносчиками инфекционных болезней.
Крысы отличаются умом, и их довольно сложно поймать. Химический способ борьбы (с помощью ядов) дорогостоящ. Предлагаемое устройство является экологически чистым, отличается простотой и не потребует больших затрат, при этом обеспечивая надежное уничтожение грызунов.
Рис. 4.1. Конструкция ловушки
Принцип работы приспособления аналогичен электрическому стулу, при меняемому в США для казни преступников, но в миниатюрном исполнении. К контактным токопроводящим площадкам, рис 41, подводится напряжение не менее 380 В (например можно подключить две фазы от трехфазного напряжения). Если использовать одну фазу и общий провод (220 В), то устройство будет не всегда убивать — враг пискнет и убежит. Когда трехфазное напряжение не подведено и его сложно найти поблизости, можно воспользоваться повышающим трансформатором с соответствующим напряжением во вторичной обмотке (или автотрансформатором). Обычный трансформатор для увеличения выходного напряжения можно включить в режиме, повышающем напряжение автотрансформатора. Но в этом случае устройство будет потреблять электроэнергию в ждущем режиме (ток холостого хода трансформатора), что нежелательно.
Само приспособление удобно выполнять из листа стеклотекстолита, сняв при помощи резака и ножа лишние участки фольги и подпаяв соединительные провода. Аналогичную конструкцию можно сделать и из медной фольги, закрепив ее на диэлектрическом (не впитывающем влагу) основании. При этом должен быть исключен случайный контакт токопроводящих поверхностей ловушки с землей (жесткое крепление на месте установки).
Рис. 4.2. Схема подключения
Для того чтобы привлечь внимание крысы и заманить ее, в центр устройства кладем приманку, например кусочек мяса, и подключаем напряжение. После этого раз в день проверяем ловушку и выкидываем убитых грызунов. Но не следует забывать, что применяемое напряжение представляет опасность для жизни не только грызунов, особенно в условиях подвала, и в целях электробезо пасности желательно установить реле К1 (рис. 4.2) на соответствующее рабочее напряжение, которое будет отключать питание ловушки при включении света в подвале или открывании двери (при установке концевого выключателя F1 на входной двери). Общий выключатель SA1 должен обязательно отключать оба провода.
Устройство не может вызвать пожара, и практика его применения показала высокую эффективность.
4.2. Простой металлоискатель
При ремонтных работах, когда в квартире приходится сверлить стены, есть вероятность наткнуться на металлическую арматуру, трубы или проводку. Чтобы этого не случилось, удобно воспользоваться металлоискателем для точного определения их места. Устройство позволяет на расстоянии до 20 см обнаруживать любой металлический предмет. Дальность обнаружения зависит только от площади металлического предмета. Для тех, кому этого расстояния недостаточно, например искателям кладов, можно порекомендовать увеличить размеры рамки (что должно увеличить и глубину обнаружения).
Рис. 4.3. Электрическая схема металлопскателя
Электрическая схема, рис. 4.3, собрана на транзисторах, работающих в режиме микротоков, и состоит из ВЧ генератора (100 кГц) на VT1, который настраивается резистором R1 на максимальную чувствительность к металлическим предметам. В качестве катушек L1 и L2 используются две рамки, рис. 4.4. Транзисторы VT2, VT3 включены как диоды и обеспечивают стабилизацию режимов автогенератора — VT1 и активного детектора на VT4 при изменении напряжения питания и температуры. Резистор R6 устанавливает чувствительность металлоискателя. На транзисторах VT5 и VT7 собран звуковой автогенератор, который включается транзистором VT6. Для того чтобы обеспечить громкий звук пьезоизлучателя HF1, параллельно включена катушка L3, что увеличивает напряжение на пьезоизлучателе за счет резонанса между внутренней емкостью HF1 и индуктивностью L3.
При попадании в поле катушек L1-L2 металлического предмета частота генератора меняется, что приводит к уменьшению амплитуды напряжения на входе детектора (VT4) — он запирается, а транзистор VT6 откроется, что разрешает работу звукового генератора.
Рис. 4.4. Расположение катушек L1, L2 и вид конструкции металлоискателя
Рис. 4.5. Топология печатной платы и расположение элементов
шает работу звукового генератора. Данная схема по сравнению с аналогичными устройствами, использующими принцип биений частот, обеспечивает большую чувствительность и проще в изготовлении.
В качестве источника питания применена батарея типа "Корунд" или "Крона" (9 В), но может использоваться и любой стационарный источнике напряжением 6...10 В. Ток потребления в дежурном режиме не более 1,5 мА, при работе звукового сигнала — 7 мА.
Все элементы схемы размещены на печатной плате из одностороннего стеклотекстолита, рис. 4.5. Корпус для рамки выполняется из любых диэлектрических материалов, например склеивается из оргстекла. Катушки L1 и L2 одинаковые и содержат по 40+40 витков провода ПЭЛ диаметром 0,25 мм (периметр катушек 340 мм); L3 наматывается на двух склеенных вместе ферритовых кольцах типоразмера К10х6х3 мм марки 400...1000НМ — 250...300 витков провода ПЭЛ диаметром 0,1 мм.
Подстроенные резисторы R1 и R6 типа СП5-16В, остальные могут быть любыми малогабаритными. Конденсаторы применены: С7 — типа К50-35 на 16В, остальные типа К10-17. Диод VD1 можно заменить любым импульсным. Микровыключатель SA1 типа ПД-9-2.
При настройке устройства, если не удается получить генерации на VT1 с помощью регулировки резистором R1 (контролировать осциллографом напряжение на этом резисторе), потребуется изменить фазу подключения выводов катушки L1. При регулировке схемы на максимальную чувствительность к металлическим предметам может потребоваться изменить расстояние перекрытия катушек А (рис. 4.4), после чего рамки катушек фиксируются клеем.
4.3. Прерыватель тока
Иногда в конструкциях (от игрушек до сигнализации) требуется прерывистая работа индикаторов, сирены или аварийной мигалки. Это необходимо, чтобы обеспечить экономичность работы, т. к. значительно снижает потребляемую энергию, что особенно важно, если источником питания является батарея или аккумулятор, например в автомобиле.
Обычно такие устройства, для получения малых габаритов, выполняют на КМОП микросхеме (генератор импульсов) и Транзисторе (усилитель тока). Схема получится проще, если собрать генератор на электронных переключателях К561КТЗ, рис. 4.6. Они так же, как и все микросхемы КМОП серии, работают в режиме микротоков, но могут коммутировать ток до 200 мА, а большое входное сопротивление управляющих входов позволяет не использовать электролитические конденсаторы, что повышает надежность устройства. Если требуется включать нагрузку с большим потребляемым током, вместо светодиодов устанавливается реле К1, рис. 4.7.
На элементах микросхемы D1.1 и D1.2 собран генератор импульсов с периодом 3 с (длительность около 1 с), a D1.3, D1.4 используются как коммутаторы тока через светодиоды. Электронные ключи замыкаются при появлении на управляющем входе лог. "1". Период и длительность импульсов можно легко установить любую с помощью резисторов R1, R2 (или С1) соответственно.
Pис. 4.6. Электрическая схема прерывателя
Рис. 4.7. Подключение реле для коммутации мощной нагрузки
Схема может работать от источника питания с напряжением от 3 до 15 В. При этом яркость свечения светодиодов зависит от номиналов резисторов R4 и R5. Светодиоды и резисторы подойдут любого типа. Конденсаторы применены типа К10-17. Если использовать реле, то вместо соответствующего резистора на входе ключа ставится перемычка, а напряжение питания схемы должно соответ ствовать рабочему для реле, но не более 15В, так как для микросхемы это напряжение является максимально допустимым.
Топология односторонней печатной платы и расположение на ней элементов приведены на рис. 4.8 (извилистой тонкой линией показана необходимая объемная перемычка).
Pис. 4.8. Топология печатной платы и расположение элементов
4.4. Широкодиапазонный таймер
В литературе публиковалось много схем простых электронных таймеров. Такие схемы, как правило, имеют дискретное переключение временных интервалов в очень ограниченном диапазоне. При этом некоторые положения переключателя не используются, а временных интервалов, наиболее часто необходимых, нет, или же они устанавливаются с невысокой точностью (что характерно для схем, использующих процесс заряда конденсатора).
Приведенная на рис 4.9 схема таймера позволяет устранить все перечисленные недостатки и обеспечивает возможность устанавливать десять любых фиксированных временных интервалов в диапазоне от 3 с до 16659 мин. Количество временных интервалов легко может быть увеличено, если применить микропереключатель SA2 на большее число положений. Переключатель SA1 устанавливает диапазон отсчета временного интервала: минуты (М) или секунды (С).
Устройство собрано на трех КМОП микросхемах, что обеспечивает малое потребление тока (0,25 мА) и позволяет использовать автономное питание от аккумуляторов напряжением от 5 до 12 В (применены четыре элемента Д-0.26Д).
Таймер, кроме звуковой сигнализации, может работать совместно со стационарным бестрансформаторным блоком питания (рис. 4.10), что позволяет управлять включением мощной нагрузки (до 2 кВт, например обогревателя) на необходимый интервал. При этом от стационарного блока происходит также подзаряд аккумуляторов.
Pис. 4.9. Электрическая схема таймера
Схема устройства состоит из задающего генератора минутных (секундных) импульсов на микросхеме D1, счетчика с изменяемым коэффициентом деления D2 и RS-триггера, собранного на логических элементах D3.2...D3.4.
Pис. 4.10. Сетевой источник
питания таймера с электронным
включением нагрузки
Звуковым излучателем является пьезозвонок ЗП-25 (ЗП-18), включенный параллельно с катушкой L1. Катушка позволяет за счет резонансных колебаний в контуре между емкостью излучателя и индуктивностью L1 значительно повысить громкость звука.
При использовании микросхемы D1 совместно с кварцем отпадает необходимость в точной настройке задающего генератора.
Включение таймера производится кнопкой SB1 при предварительной установке нужного временного интервала переключателями SA1 и SA2. Кнопка SB2 служит для отмены отсчета временного интервала.
В исходном состоянии на выводах D3/11 лог. "1", D3/4 — "0". Нулевое со стояние на входах М счетчика запрещает его работу в режиме счета (производится только запись установленного коэффициента деления). При включении таймера (SB1) триггер переключится (D3/4 — "1"), и начинает работать счетчик D2. Через интервал времени, заданный двоичным кодом на входах, на выходе D2/23 появится лог. "1". Этот сигнал разрешает прохождение звуковой частоты от D1/11 через D3.1 на базу VT1 и HL1.
Длительность работы звукового сигнала зависит от постоянной времени цепи заряда R4-C3. Как только напряжение на СЗ достигнет порога срабатывания элемента D3.2, триггер вернется в исходное состояние. При этом запирающее напряжение через диод VD2 и резистор R6 поступает на базу VT1.
Правила установки любого коэффициента деления для счетчика 561ИЕ15 подробно описаны в разделе 1. Так, например, для коэффициента деления N=480 (P1=P2=P5=0):
N=M(1000Р1 +100Р2+10РЗ+Р4)+Р5=10(10х4+8)=480
На схеме показаны положения перемычек переключателя SA2 для коэффициентов деления 480, 240, 120, 60, 20. В зависимости от положения SA1 на вход D2/1 будут поступать секундные или минутные импульсы. При этом выдерживаются интервалы, соответствующие 8 мин (ч), 4 мин (ч), 2 мин (ч), 1 мин (ч) и 20 с (20 мин). Одни и те же интервалы можно получить в зависимости от выбора М, разной комбинацией сигналов на входах Р1...Р5 счетчика.
При подключенном таймере к стационарному источнику питания транзистор VT2, совместно с VT3 и VT4, управляет симисторным коммутатором VS1. Включение нагрузки производится кнопкой SB1, а выключение выполняется автоматически, через заданный интервал, или кнопкой SB2 в любое время.
В схемах использованы резисторы С2-23, конденсаторы С1, С2 типа К10-17, СЗ...С5 — КМ-6. Номиналы могут отличаться от указанных на 20%. Диоды VD1..VD3 подойдут любые импульсные. Транзистор КТ3107 можно заменить на КТ361 Г. Симистор VS1 может применяться на меньший или больший рабочий ток, а также подойдет оптронный симистор ТС0142-50-6, включенный аналогично приведенной на рис. 4.11 схеме. Симистор устанавливается на радиатор.
Переключатель SA1 типа ПД9-2, SA2 — ПР2-5П2НВ, кнопки SB1, SB2 — любые малогабаритные (их легко можно сделать самостоятельно из пружинящих контактов разобранного реле). Микросхемы 561-й серии заменяются на 564-ю.
Катушку L1 можно взять от неисправных электронных часов или изготовить, намотав на двух склеенных ферритовых (600...1000НМ) кольцах типоразмера К10х6х3 мм примерно 250...300 витков проводом ПЭЛШО диаметром 0,1 мм. Импульсный трансформатор Т1 наматывается проводом ПЭЛШО диаметром 0,18 мм на ферритовом кольце К20х12х6 мм — 2000...4000НМ1 и содержит в обмотке 1 — 80 витков, 2 — 60 витков. Перед намоткой острые грани сердечника нужно закруглить надфилем, иначе они могут прорезать провод. После намотки и пропитки катушки лаком или парафином необходимо убедиться в отсутствии утечки (сопротивления) между обмотками.
При правильной сборке и исправных деталях настройка таймера не требуется. Проверку работоспособности устройства удобнее начинать с минимальных временных интервалов (положение переключателя SA1 — "С"). Настройка блока питания и электронного коммутатора заключается в подборе номинала резистора R17 на максимум напряжения в нагрузке (выполняется при отключенном резисторе R16). Если не удается получить максимальное выходное напряжение, то потребуется поменять фазировку одной из обмоток Т1.
Данное устройство имеет один недостаток: требуется заранее установить временной интервал, так как для его записи в регистры счетчика требуется три такта входных импульсов. Как правило, приходится редко изменять установленный интервал и это незаметно.
4.5. Ступенчатое включение мощной нагрузки
Устройство предназначено для постепенной подачи сетевого напряжения в активную нагрузку.
Из опыта известно, что наиболее часто мощные лампы и нагреватели выходят из строя в момент включения. Это связано с тем, что нагревательная нить лампы в холодном состоянии имеет сопротивление более чем в 10 раз меньшее, чем при прогреве. Из-за чего возможен бросок тока при подаче напряжения. Если же включение случайно попало на момент действия в сети максимальной амплитуды напряжения, возникает импульсная перегрузка.
Приведенная на рис. 4.11 схема облегчает режим работы нагрузки, снижая броски тока за счет постепенного (в течение 4 с) увеличения амплитуды подаваемого напряжения. Это позволяет значительно продлить жизнь ламп, кроме того, снижается уровень сетевых помех в момент включения. Электрическая схема работает следующим образом. Электронным симисторным коммутатором VS1 управляет генератор на однопереходном транзисторе VT1.
Рис. 4.11. Электрическая схема
Генератор синхронизирован с частотой сети, так как он питается пульсирующим напряжением, рис. 4.12. В зависимости от величины резисторов R3 и R4 время заряда С1 может меняться, т. е. меняется угол открывания оптронного симистора. Как только напряжение на конденсаторе достигнет порога открывания VT1, С1 быстро разрядится через ограничительный резистор R1 и светодиод оптрона.
Pис. 4.12. Форма напряжения
Для открывания симистора при любой окружающей температуре, через светодиод должен проходить ток не менее 80...100 мА. Использование однопереходного транзистора позволяет иметь источник питания схемы управления небольшой мощности, так как необходимая для открывания симистора энергия накапливается на конденсаторе С1 и отдается в течение короткого импульса.
При включении, в начальный момент, транзистор VT2 заперт (примерно в течение 4 с), так же, как и VT3. От номинала резистора R3 зависит, какое минимальное начальное напряжение будет подано в нагрузку А1. Как только С2 зарядится, появится ток через VT3, что приведет к открыванию VT2, — резистор R3 будет закорочен переходом эмиттер-коллектор транзистора. Это уменьшит время заряда С1, т. е. транзистор VT1 сформирует импульс для открывания VS1 раньше. Номинал резистора R4 подбираем так, чтобы при этом было максимальное напряжение в нагрузке.
Так как в схеме облегчается режим работы симистора VS1, устройство позволяет коммутировать суммарную мощность нагрузки до 10000 Вт.
В схеме применены резисторы МЛТ, а конденсаторы С1 — К73-9, С2, СЗ — К52-1Б на 63 В. Оптронный коммутатор устанавливается на радиатор (при использовании схемы с нагрузкой до 500...1000 Вт в нем нет необходимости).
Топология печатной платы приведена на рис. 4.13.
Рис. 4.13. Топология печатной платы и расположение элементов
4.6. Управление освещением с любого пульта ДУ
В продаже уже появились импортные устройства аналогичного назначения, но по достаточно высокой цене. Такое приспособление при желании несложно сделать самостоятельно, причем без больших материальных затрат.
Привычной частью современного телевизора или музыкального центра является пульт дистанционного управления (ДУ) на ИК-лучах. Таким пультом можно также управлять и освещением с помощью небольшой приставки. При этом нажимается одна из кнопок (редко используемых). Предлагаемое устройство позволяет с любого пульта ДУ на расстоянии до 5 м включать и выключать нагрузку, например освещение.
Обычно для управления работой телевизора приходится держать нажатой кнопку пульта не более 1 с. Предлагаемое устройство выполняет переключение нагрузки, если кнопка на пульте нажата в течение времени более 2 с. Этот алгоритм выделения команды для управления переключением позволяет значительно упростить электрическую схему.
Рис. 4.14. Приемник ПК-импульсов
Устройство состоит из приемника ИК-импульсов, рис. 4.14, и блока управления, рис. 4.15. В качестве приемника можно взять любую из типовых схем, применяемых в телевизорах для ДУ. Узел управления собран на трех КМОП микросхемах и состоит из формирователя широких импульсов (D1.1), селектора двухсекундного временного интервала (D1.2) и двоичных счетчиков на элементах триггеров D2...D3. Кнопки SB1 и SB2 позволяют включать и выключать нагрузку без пульта ДУ.
Индикатором срабатывания последнего триггера (D3.2) является свечение светодиода HL1. Оптронный ключ VS1 обеспечивает электрическую развязку блока управления от сети 220 В, что позволяет получить хорошую устойчивость схемы к помехам.
Рис. 4.15. Схема узла управления
Вместо оптрона оконечный каскад управления лампой можно выполнять на обычном симисторе по схеме, показанной на рис. 4.16.
Рис. 4.16. Схема подключения симистора
На рис. 4.17 приведены диаграммы напряжений в контрольных точках, поясняющие работу блока управления. В начальный момент подачи питания на схему, цепь из элементов C4-R5 обеспечивает установку триггера в D3.2 в исходное состояние (лог. "0" на выходе 1).
При нажатой кнопке на пульте ДУ из приходящих пачек импульсов на входы элементов D1.1 и D1.2 формируются более широкие. Триггер D1.2 через 2 с обеспечивает установку счетчиков D2, D3.1 в исходное состояние (формирует импульс обнуления на выходе D1/12).
Схема устройства не критична к выбору деталей и их номиналы могут отличаться от указанных на 30%. Все постоянные резисторы применены типа МЛТ, подстроенный R1 — типа СП4-1. Неполярные конденсаторы типа К10-17, электролитические СЗ и С5 (для приемника С1, С2 и С5, Сб) типа К53-16. Диоды КД522 можно заменить любыми импульсными. Стабилизатор напряжения D4 (импортный аналог 78L12) заменяется более распространенным из серии КР142ЕН8Б.
Трансформатор Т1 типа ТП112-8-1, но также подойдет любой из тех, что применяется в отечественных телевизорах для питания в дежурном режиме или в игровых приставках типа ДЕНДИ. Необходимое напряжение вторичной обмотки — 15...20 В, и ток — не менее 10 мА.
При подключении вместо оптронного ключа симистора, импульсный трансформатор Т2 выполняется на ферритовом кольце типоразмера К16х10х4 мм марки М4000НМ1 или М2000НМ проводом ПЭЛШО диаметром 0,18 мм и содержит в обмотке 1 — 80 витков, 2 — 60 витков. Перед намоткой острые грани сердечника необходимо закруглить надфилем, иначе они прорежут провод и будет замыкание между обмотками.
Рис. 4.17. Диаграмма напряжений
Конструктивно все устройство собрано в корпусе с размерами 110х88х44 мм. Печатная плата приемника ИК-импульсов, рис. 4.18, помещается в экран из медной фольги, что необходимо для исключения влияния помех. Для монтажа схемы блока управления использована универсальная макетная плата, а соединения выполнялись проводами.
Рис. 4.18. Печатная плата схемы приемника ИК-импульсов
Приставка проверена в работе с пультами ДУ от импортных телевизоров разных фирм — АКА1, SAMSUNG, PANASONIC. Но так как у каждого пульта свое соотношение между длительностью кодовой посылки и интервалом, для четкого срабатывания переключения может потребоваться подстройка схемы резистором R1 (или подбора номинала конденсатора С1).
4.7. Электронное зажигание для газовой плиты
Современные газовые плиты выпускаются промышленностью с уже имеющимся встроенным электронным зажиганием газа. Что довольно удобно и более безопасно, чем использование спичек или ручной зажигалки. Но в стране имеется еще большое количество старых плит, не оборудованных такими устройствами. В этом случае может быть полезным применение схемы на рис. 4.19. Она довольно простая, что позволяет изготовить устройство самостоятельно.
Рис. 4.19. Электрическая схема преобразователя
Рис. 4.20. Расположение электрода поджига вблизи газовой горелки
Электрическая схема состоит из умножителя, повышающего в два раза сетевое напряжение на конденсаторах С1...С4. Конденсаторы заряжаются через резистор R1 и соответствующий диод, а при достижении напряжения величины 650 В открывается тиристор VS1 (напряжение открывания тиристора зависит от номиналов элементов — резистора R4 и емкости С5).
Рис. 4.21. Топология печатной платы
зависит от номиналов элементов — резистора R4 и емкости С5). В этом случае происходит быстрый разряд конденсаторов через открытый тиристор и малое сопротивление первичной обмотки трансформатора Т1. В результате этого на вторичной обмотке трансформатора появляются импульсы высокого напряжения. Выводы трансформатора высоковольтным проводом соединяются с электродами, расположенными вблизи от газовых горелок, рис. 4.20. В качестве электродов, для поджига газа, можно воспользоваться отслужившими свой срок автомобильными свечами. Для этого потребуется снять с них металлическую рубашку (ножовкой по металлу) и закрепить под крышкой на диэлектрической пластине. При этом, если нажать кнопку SB1, искра будет появляться между двумя горелками одновременно. Если же горелок четыре (что наиболее часто встречается), то вторичных обмоток у трансформатора должно быть две и они могут иметь по 1000...1200 витков.
Настройка схемы заключается в подборе номинала резистора R4 (контролируя осциллографом напряжение на конденсаторах) таким, чтобы тиристор открывался периодически и синхронно с сетевыми заряжающими конденсаторы импульсами.
В схеме применены детали: резисторы R1 — ПЭВ-25, остальные типа МЛТ; конденсаторы С1...С4 типа МБМ, С5 — любого типа. Диоды можно заменить любыми выпрямительными на ток не менее 0,5 А и допустимое обратное напряжение не менее 400 В.
Конструкция высоковольтного трансформатора аналогична используемому в электрошоковом устройстве (см. рис. 2.27), но можно применить и трансформатор промышленного изготовления от электронных устройств зажигания газа.
Все элементы схемы, кроме резистора R1 и трансформатора Т1, расположены на печатной плате, рис. 4.21.
Вся конструкция закрывается диэлектрическим корпусом подходящих размеров, а кнопка SB1 закрепляется на корпусе плиты в удобном месте.
4.8. Зависимое включение двух разных устройств
Некоторые из электро- и радиоприборов работают совместно. Например, при использовании активной телевизионной антенны было бы удобно, если блок питания антенного усилителя сам включался при включении телевизора и автоматически выключался при его отключении. Это избавляет от необходимости следить за состоянием вспомогательных устройств (ведомого) при включении главного (ведущего). Удобно также иметь вечером небольшую фоновую подсветку за телевизором — это меньше утомляет зрение при длительном просмотре телепередач.
Данную задачу выполняет приведенная на рис. 4.22 схема. При появлении тока через нагрузку, подключенную к гнездам XS1, напряжение, снимаемое с автотрансформатора Т1, выпрямляется диодами VD1, VD2 и через резистор R1 подается на управление коммутатором VS1. Оптоэлектронное реле VS1 из серии КР293 (маркировка на корпусе 5П19Т1) позволяет коммутировать любую нагрузку с потребляемым током до 1 А (200 Вт), подключенную к гнездам XS2. При этом падение напряжения на ключе VS1 не превышает 2 В.
Рис. 4.22. Электрическая схема приставки
В данной схеме имеется возможность дистанционного управления включением устройств, если главное (например телевизор) имеет такую возможность (в дежурном режиме телевизор потребляет маленький ток, что недостаточно для включения электронного коммутатора).
Трансформатор Т1 является самодельным и выполнен на основе широко распространенного телефонного (используются в старых моделях телефонных аппаратов). Для этого потребуется снять с него одну верхнюю обмотку и на ее месте расположить 120 витков провода ПЭЛ-2 диаметром 0,5 мм. Остальные обмотки подключаются по схеме повышающего напряжение автотрансформатора. Это увеличивает минимальную чувствительность устройства. Для трансформатора может также использоваться ферритовый магнитопровод М2000НМ1 типоразмера Ш5х5 мм. Чувствительность схемы к минимальному току нагрузки зависит также от числа витков в первичной обмотке (4-6).
В схеме могут применяться любые диоды на ток не менее 100 мА. Резистор использован МЛТ, полярные электролитические конденсаторы типа К50-35 или аналогичные.
Печатная плата для схемы не разрабатывалась, а монтаж выполняется объемным монтажом. Вся конструкция размещена в пластмассовом корпусе с размерами 90х50х30 мм.
Налаживание устройства удобно проводить при подключенной лампе и вольтметре к гнездам XS2 и сводится к подбору номинала резистора R1 так, чтобы ключ VS1 полностью открывался при реальной нагрузке, подключенной к гнездам XS1. Максимально допустимая мощность нагрузки ведущего устройства, подключенного к гнездам XS1, составляет 200 Вт. Она может быть увеличе на, при увеличении диаметра провода в первичной обмотке автотрансформатора (при этом число витков в первичной обмотке можно уменьшить).
Приведенная схема не потребляет энергию в ждущем режиме. Она проще в изготовлении и содержит меньше деталей по сравнению с устройством аналогичного назначения, опубликованным в журнале Радио N 8, 1996.
Рис. 4.23. Схема приставки для управления мощной нагрузкой
При необходимости включать более мощную нагрузку ведомого устройства можно использовать промежуточное реле (включаемое к гнездам XS2) с контактами на необходимый ток или же собрать аналогичную схему коммутатора с более мощным тиристором, рис. 4.23.
4.9. Сетевой сигнализатор
Уходя из квартиры, нужно не забыть выключить свет и бытовые приборы. Предлагаемое устройство сигнализатора напомнит об этом.
Данный блок является индикатором наличия тока в цепи и может быть установлен в квартире вблизи сетевого распределительного щитка (рис. 4.24), а диод размещается на видном месте около входной двери. Светодиод будет све титься только в том случае, если в сетевой цепи протекает ток. Как правило, в современных квартирах имеется не менее двух сетевых контуров подводки напряжения. По одной цепи подключены все розетки, а второй контур используется для подачи напряжения на освещение (через соответствующие включатели). Несложно установить такие схемы индикаторов по каждой из цепей. Для питания холодильника потребуется проложить отдельные провода от щитка, где индикатор тока в цепи не нужен.
Рис. 4.24. Индикатор тока в цепи
Приведенная схема индикатора имеет порог чувствительности к мощности подключенной нагрузки примерно 40 Вт. В этом случае работа бытовых радиоприборов в дежурном режиме, таких, как телевизор, видеомагнитофон, часов и др., не вызовет свечения индикатора.
Для изготовления токового трансформатора Т1 взят унифицированный телефонный трансформатор, с каркаса которого снимается верхняя обмотка и на ее месте (4-6) наматываются витки до заполнения свободного места проводом ПЭЛ-2 диаметром 1 мм. В этом случае Т1 позволяет попускать через себя ток до 15 А (мощность 3 кВт).
Светодиод HL1 подойдет любой, с малым потребляемым током при свечении, например из серии КИПД.
Схема в дежурном режиме не потребляет энергии и абсолютно безопасна в работе и удобна в подключении.
4.10. Защита радиоаппаратуры от повышенного напряжения в сети
Повышенное напряжение в сети может появиться в результате аварии. Особенно эта проблема актуальна в сельской местности или на даче, где такие явления не редки. Это связано с тем, что подходящие сетевые провода имеют открытую (воздушную) проводку и возможен их обрыв с замыканием.
Большая часть современной радиоаппаратуры имеет импульсные источники питания, которые в случае перегрузки выходят из строя. Постоянно контролировать сетевое напряжение неудобно, да и не эффективно. Ведь перегрузка при работающей радиоаппаратуре может произойти в любой момент времени. Предлагаемое устройство позволяет предотвратить повреждение электроприборов и радиоаппаратуры от повышенного напряжения.
Простейший вариант защиты аппаратуры от перегрузки можно выполнить, используя специальный разрядник, включенный после входных предохранителей. Он имеет такую характеристику, что пробой газа внутри корпуса происходит при превышении действующего напряжении выше 270 В. Сработавший разрядник имеет очень малое внутреннее сопротивление и закорачивает сетевую цепь. В этом случае просто перегорят плавкие вставки (или сработает защитный электромеханический автомат), что прервет подачу напряжения на все включенные бытовые устройства.
Основными недостатками разрядника является его дефицитность и нерегулируемый порог срабатывания.
Рис. 4.25. Электрическая схема защитного устройства
Приведенная схема, рис. 4.25, аналогична по принципу работы разряднику. Только вместо него использован более доступный электронный коммутатор — симистор. При этом порог открывания VS1 можно установить с помощью резистора R4 на уровне 260 В (действующее значение). Конденсатор С1 устраняет срабатывание схемы от кратковременных помех (выбросов). Устанавливать светодиод HL1 не обязательно, но его удобно иметь при настройке, когда управление симистором можно временно отключить.
Проверить работоспособность устройства и установить порог срабатывания защиты можно при помощи ЛАТРа (установив предохранители FU1 на небольшой ток — 1 ...2 А). В ждущем режиме схема потребляет ток не более 3 мА.
Pис. 4.26. Доработка схемы защитного устройства
Защитное устройство можно сделать более "умным", если дополнить его схемой, реагирующей на ток в цепи, рис. 4.26. (Работа ее описана в предыдущей статье, где также приведена методика изготовления токового трансформатора.) При этом устройство будет срабатывать только в том случае, если к сети подключены потребители энергии.
4.11. Микрофонный усилитель
Схема микрофонного усилителя, рис. 4.27, отличается от аналогичных, опубликованных в литературе, малыми габаритами и глубокой автоматической регулировкой усиления (АРУ). Это позволяет использовать ее в составе радиостанции или кассетного магнитофона. Все устройство выполнено на одной микросхеме, имеющей в своем корпусе четыре универсальных операционных усилителя.
На элементе микросхемы DA1.1 собран неинвертирующий предварительный усилитель сигнала с микрофона. Это необходимо для эффективной работы автоматической регулировки усиления и снижения уровня шумов. Регулировка коэффициента передачи сигнала между каскадами осуществляется за счет изменения внутреннего сопротивления открытого транзистора VT1, включенного в делитель напряжения, образованный совместно с резистором R5. В исходном состоянии (при низком уровне входного сигнала) VT1 заперт и на прохождение сигнала влияния не оказывает.
Второй каскад усилителя собран на элементе DA1.2. Полоса усиливаемых частот от 50 Гц до 50 кГц. Номинальное выходное напряжение 200 мВ. Элемент DA1.3 является повторителем сигнала, что улучшает согласование схемы с нагрузкой.
Pис. 4.27. Электрическая схема микрофонного усилителя
Для работы системы АРУ используется усилитель на DA1.3 и детектор уровня сигнала на транзисторах VT2, VT3. Время восстановления схемы (инерционность) задается конденсатором С12. При изменении входного напряжения на 50 дБ — выходное меняется не более чем в 2 раза.
В схеме применены полярные конденсаторы типа К50-16, остальные К10-17; резисторы МЛТ.
При правильной сборке схема будет работать сразу, но элементы, отмеченные звездочкой "*", могут потребовать подбора. Так, изменением величины резистора R10 необходимо добиться в точке делителя, указанной на схеме, напряжения 1,15 В. Это напряжение подается на входы усилителей и обеспечивает начальное смещение для работы микросхем на линейном участке характеристики. В этом случае, при перегрузке, ограничение сигнала будет симметричным. От номиналов резисторов R3 и R7 зависит коэффициент усиления каскадов.
4.12. Как сделать из монитора телевизор
У многих, кто начинал свое знакомство с компьютерами из семейства ZX-SPECTRUM, БК-001 и др., имеется цветной монитор типа 32ВТЦ-202 (МС 6113.02) или аналогичный. Если этот монитор уже не используется по своему прямому назначению, то предлагаемая доработка схемы позволяет превратить его в современный телевизор с дистанционным управлением на ИК-лучах. Для этого потребуется к уже имеющимся в мониторе блокам установить часть недостающих узлов: модуль цветности, радиоканал и блок управления. Их лучше приобрести уже готовые. Узлы эти унифицированны и легко устанавливаются внутри корпуса на металлическом каркасе (калитке). Это не потребует больших материальных затрат и много времени.
Имеющуюся в мониторе плату видеоканала и блок управления необходимо удалить (они в дальнейшем не используются). А для удобства крепления новых плат фильтр блока питания и сам блок питания перемещаются глубже внутрь основания корпуса.
При доработке схемы монитора применены новые узлы:
Блок-схема электрических соединений узлов показана на рис. 4.28. На ней новые блоки, которые устанавливаются в корпусе, показаны пунктиром. На рисунке изображены только выполняемые соединения между блоками, в дополнение к уже имеющемуся монтажу.
Расположение блоков на каркасе внутри корпуса показано на рис. 4.29 (вид сзади). Блок радиоканала устанавливается в нижней части левой калитки. В верхней части той же калитки закрепляется модуль цветности. Блок питания располагается вертикально на своем родном кронштейне, выходным разъемом вверх.
В данном случае в качестве блока управления используется модуль МСН- 405 совместно с блоком дежурного режима БПД-45. Модуль МСН-405 устанавливают на месте снятого блока управления, используя металлический кронштейн. На месте его установки с лицевой стороны в корпусе телевизора прорезается отверстие под индикатор и органы управления. Блок дежурного режима и ПФП устанавливаются на основании внизу корпуса телевизора на освободившемся после перемещения БП месте. Динамик крепится справа внизу корпуса на имеющееся посадочное место с помощью саморезов.
Соединение блоков и модулей проводится жгутом, прокладку которого лучше начинать от источника питания до требуемых мест.
Для нормальной работы телевизора на плате МГСР, расположенной на модуле строчной развертки, потребуется выполнить доработку, рис. 4.30. Она заключается в установке транзистора КТ315 в разрыв цепи от разъема ХР1/13 (место для размещения указанных элементов на плате имеется). Это обеспечи вает инвертирование сигнала, что необходимо для нормальной синхронизации генератора внутри микросхемы.
Потребуется также на плате блока разверток установить дополнительные резисторы R1 и R2 (см. рис. 4.28). Они используются в дальнейшем для регулировки напряжения.
При настройке телевизора потребуется его комплексная регулировка. Для этого необходимо представлять себе принцип работы входящих в него узлов и иметь электрические схемы всех блоков. Объем книги не позволяет описывать этот процесс подробно. Например, можно порекомендовать познакомиться с книгой "Регулировка и ремонт цветных телевизоров", автор С. А. Ельяшкевич, или аналогичной.
В частности, в процессе регулировки выполняются операции в следующей последовательности:
Рис. 4.28. Схема соединений блоков
Pис. 4.29. Расположение узлов внутри корпуса
Pис. 4.30. Выполняемая доработка на плате модуля строчной развертки