5. Источники питания и зарядные устройства
В литературе приведено немало описаний различных схем блоков питания и зарядных устройств. Современная элементная база позволяет значительно уменьшить габариты блоков питания за счет использования интегральных стабилизаторов напряжения с минимальным количеством дополнительных элементов, а зарядные устройства выполнять с автоматическим отключением режима заряда.
Для уменьшения габаритов и веса радиоаппаратуры все более широкое применение находят импульсные источники питания. Познакомившись с приведенными в этом разделе работами, вы легко сможете собрать себе необходимый блок питания для приемника, бытового компьютера, а также многих других устройств.
5.1. ПИТАНИЕ НИЗКОВОЛЬТНОЙ РАДИОАППАРАТУРЫ ОТ СЕТИ
Современные переносные и карманные радиоприемники, особенно импортные, как правило, рассчитаны на питание от двух батареек или аккумуляторов и могут в стационарных условиях питаться от любого источника со стабилизированным напряжением 3 В и допустимым током до 0,2 А. Такое же напряжение необходимо и для питания электронных игр типа "НУ ПОГОДИ" и многих других устройств. Нужный блок питания, если постараться, можно найти в коммерческих магазинах, но импортного производства и по неоправданно высокой цене, а отечественная промышленность таких источников питания выпускает мало. Кроме того, они, как правило, не имеют стабилизации выходного напряжения, что приводит к прослушиванию сетевого фона.
Рис. 5.1
Собрать необходимый источник по силам каждому, кто умеет пользоваться паяльником, и это не потребует много времени и больших затрат.
Здесь приведены два варианта построения такой схемы, собранных на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих возможностей.
На рис. 5.1 приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с автоматической электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.
Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1...VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5...6 В, — меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора.
В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.
Транзистор VT1 крепится на теплорассеивающей пластине. Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5...6 В. Конденсаторы С1...СЗ типа К50-35.
Рис. 5.2
Вторая схема (рис. 5.2) использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на рис. 5.1, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме — при низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку.
Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор.
Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.
5.2. УНИВЕРСАЛЬНЫЙ БЛОК ПИТАНИЯ
Применение микросхемы КР142ЕН12А (Б) и унифицированного трансформатора ТПП255-220-50 позволяет изготовить простой и надежный источник питания для различных бытовых устройств.
Выходное напряжение источника может плавно регулироваться в пределах от 2 до 12 В. Максимальный ток нагрузки 1 А, при этом амплитуда пульсации выходного напряжения не превышает 2 мВ.
Рис. 5.3
Электрическая схема устройства приведена на рис. 5.3. Блок собран по типовой схеме последовательного компенсационного стабилизатора напряжения. Для того чтобы на микросхеме DA1 не рассеивать слишком большую тепловую мощность, в стабилизаторе предусмотрено дискретное переключение выводов вторичных обмоток трансформатора секцией S2.1 переключателя. Одновременно переключаются и резисторы R4...R7 делителей обратной связи для установки границы регулировки выходного напряжения. На каждом из поддиапазонов нужное напряжение можно устанавливать переменным резистором R3. Переключатель обеспечивает установку диапазонов выходных напряжений 2...5, 5...7, 7...9, 9...12 В.
Микросхема DA1 имеет внутреннюю защиту от перегрузки. Индикатором работы источника является светодиод HL1.
Для удобства использования схему можно дополнить стрелочным измерительным вольтметром.
В конструкции источника питания трансформатор можно заменить более мощным из этой же серии: ТПП276-220-50, ТПП292-220-50, ТПП319-220-50 (нумерация выводов подключения обмоток при этом не меняется, но увеличатся габариты и вес устройства).
Микросхема рассчитана на работу с теплоотводом, и ее необходимо закрепить на радиаторе, при этом радиатор не должен иметь электрического контакта с корпусом конструкции.
Для удобства настройки границы диапазонов выходных напряжений подстроечные резисторы R4...R7 лучше применить многооборотные, например типа СП5-2 или СП5-14. Конденсаторы применены: С1, СЗ типа К50-29; С2.С4—К73-17.
5.3. ДВА НАПРЯЖЕНИЯ ОТ ОДНОГО ИСТОЧНИКА
Иногда для питания различных радиотехнических устройств требуется иметь два двухполярных напряжения +12 и -12 В (или +9 и -9 В) от одного источника — аккумулятора или сетевого трансформатора с одной обмоткой. Такие напряжения необходимы для работы операционных усилителей и некоторых других схем. При этом основное потребление тока схемой осуществляется, как правило, по цепи с положительным напряжением, а цепь "—" является вспомогательной.
Промышленность выпускает специализированную микросхему преобразователя для получения отрицательного напряжения: КР1168ЕП1 (входное напряжение 3...10 В, а выходное отрицательное такой же величины, что и на входе). Но она не является пока широкодоступной, а также перекрывает узкий диапазон напряжений.
Рис. 5.4
На рис. 5.4 приведена схема простого преобразователя, который позволяет получать от источника +12 В (+9 В) дополнительное стабилизированное напряжение -12 В (-9 В при использовании стабилизатора КР142ЕН8А). Ток нагрузки по цепи -12В может быть до 15 мА.
Преобразователь работает на частоте 50 кГц и сохраняет свою работоспособность при снижении напряжения питания до 7 В.
Рис. 5.5
Рис. 5.6. Конструкция трансформатора Т1
Схема состоит из автогенератора на транзисторе VT1, повышающего напряжение трансформатора Т1 и интегрального стабилизатора DA1.
При сборке требуется соблюдать полярность подключения фаз обмоток трансформатора Т1, указанную на схеме. Со вторичной обмотки трансформатора напряжение после выпрямления должно быть 15...19 В, что необходимо для нормальной работы стабилизатора DA1.
Для настройки преобразователя сначала вместо DA1 подключаем резистор 150 Ом. При нормальной работе схемы форма напряжения на обмотке 3 в трансформаторе Т1 показана на рис. 5.5, При настройке может потребоваться подбор конденсатора СЗ и резистора R2.
Трансформатор Т1 выполняется на броневом сердечнике типоразмера Б22 из феррита 2000НМ (1500НМ) и содержит в обмотке 1 — 80 витков, 2 — 15 витков, 3—110 витков провода ПЭЛШО-0,18 (рис. 5.6). После проверки и настройки схемы катушку и ферритовые чашки закрепить клеем.
Конденсаторы С2, С4, С5 применены типа К50-29-63В, С1 и СЗ — любые малогабаритные, С6 — К53-1А-20В.
Все элементы схемы размещены на печатной плате с размерами 65х50 мм (рис. 5.7). Для уменьшения высоты платы монтаж выполнен в двух уровнях — конденсаторы С4 и С5 расположены над элементами VT1 и DA1. Схема позволяет получать и более высокое выходное напряжение, чем на входе, если использовать отрицательный выброс напряжения (рис. 5.5).
Если собранное вами устройство является стационарным и может питаться от сети, то для получения двухполярного напряжения можно применить широко распространенные малогабаритные трансформаторы (конструктивно оформленные в виде сетевой вилки). Они имеют одну вторичную обмотку, и, чтобы не перематывать трансформатор, удобно воспользоваться схемой (рис. 5.8).
Рис. 5.7. Печатная плата преобразователя
Рис.5.8
5.4. ИМПУЛЬСНЫЙ ПРЕОБРАЗОВАТЕЛЬ СЕТЕВОГО НАПРЯЖЕНИЯ
Применение импульсного преобразователя напряжения позволяет уменьшить габариты и вес источника питания, что особенно важно для переносных конструкций.
Рис. 5.9. Импульсный преобразователь напряжения
Преобразователь (рис. 5.9), предназначен для питания от сети 220 В устройств с потребляемым током до 3 А при Uвых=9,2 В (для получения из этого напряжения 5 или 6 В можно использовать любую типовую схему линейного стабилизатора).
Предложенный преобразователь отличается от аналогичных простотой и наличием защиты источника питания от перегрузки по выходной цепи в случае короткого замыкания.
Электрическая схема устройства состоит из входного фильтра (элементы С1, С2, СЗ и Т1); цепи запуска (R2, R3, R4, С4, VT1); автогенератора (VT2, VT3, Т2, ТЗ, С5); выпрямителя пониженного напряжения (VD5, VD6, С12, С13). Преобразователь собран по полумостовой схеме.
Входной фильтр преобразователя обеспечивает ослабление помех начиная с частоты 15 кГц более чем в 2 раза.
В цепи запуска используется транзистор VT1 в режиме обратимого пробоя, что позволяет формировать короткие импульсы, которые необходимы в момент включения схемы для запуска работы ключевого каскада VT2, VT3 в режиме автогенератора на частоте 30...60 кГц, при этом рабочую частоту, в небольших пределах, можно изменять емкостью С5.
В случае замыкания в цепи вторичной обмотки трансформатора ТЗ обратная связь в автогенераторе нарушается и генерация срывается до момента устранения неисправности.
КПД преобразователя при токе нагрузки 2 А составляет 0,74 (при токе 4 А—0,63).
В устройстве могут быть использованы резисторы любого типа, конденсаторы С1 типа К73-17 на 630 В; С2, СЗ типа К73-9 или К73-17 на 250 В; С4, С5 типа К10-7; С6, С7 типа К50-35 на 250 В ; С8, С9 типа К73-9 на 250 В; С10...С12 типа К10-17; С13 типа К52-1В на 20 В.
Транзистор VT1 можно заменить на КТ312А, Б, В, транзисторы VT2 и VT3 на КТ838А, КТ846В.
Дроссель Т1 намотан на двух склеенных вместе кольцевых сердечниках типоразмера К20х12х6 из феррита марки 2000НМ. Обмотки 1 и 2 содержат по 45 витков провода ПЭВ-2 диаметром 0,25 мм. Трансформатор Т2 выполнен на двух склеенных вместе кольцевых сердечниках типоразмера К10х6х3 из феррита 2000НМ. Обмотка 1 содержит 60 витков, обмотки 2 и 3 — по 15 витков провода ПЭЛШО-0,15 (отвод в обмотке 2 для обратной связи по току от третьего витка). Для изготовления ТЗ применен кольцевой сердечник К28х16х9 (2000НМ). Обмотка 1 наматывается 250 витками проводом ПЭВ-2 0,25, обмотки 2 и 3 — 22 витками проводом ПЭВ-2 диаметром 0,51 мм.
При изготовлении трансформаторов перед намоткой провода необходимо закруглить надфилем острые края сердечников и обернуть их лакотканью. Намотку проводить виток к витку с последующей изоляцией каждого слоя (лучше использовать фторопластовую ленту толщиной 0,1 мм).
Применяемые диоды VD1...VD4 могут быть заменены на любые высоковольтные, замена диодов VD5 и VD6, кроме как на КД2998В, другим типом не рекомендуется.
Наибольшее тепловыделение в схеме происходит на выпрямительных диодах VD5, VD6, и их необходимо устанавливать на радиатор. Остальные детали схемы в теплоотводе не нуждаются.
Конструктивно все элементы схемы, кроме включателя S1 и диодов VD5, VD6, размещены на односторонней печатной плате размером 140х65 мм. Топология печатной платы приведена на рис. 5.10.
Перед первоначальным включением преобразователя необходимо проверить фазы обмоток в цепях базы VT2 и VT3 на соответствие схеме. Если преобразователь при правильном монтаже сразу не начинает работать, то потребуется поменять местами выводы обмотки 1 у трансформатора Т2.
В заключение следует отметить, что, используя данную схему, можно получить и другие напряжения во вторичной цепи, для чего необходимо изменить пропорционально число витков во вторичных обмотках 2 и 3 трансформатора ТЗ.
Рис. 5.10 а. Топология печатной платы
Рис. 5.10 б. Расположение элементов
5.5. ЗАРЯДНОЕ УСТРОЙСТВО — ЭТО ОЧЕНЬ ПРОСТО
В настоящее время все более широкое применение в различных конструкциях в качестве элементов питания находят аккумуляторы НКГЦ-0,45, Д-0,26 и другие. Приведенное на рис. 5.11 бестрансформаторное зарядное устройство позволяет заряжать одновременно четыре аккумулятора Д-0,26 током 26 мА в течение 12...16 часов.
Рис.5.11
Избыточное напряжение сети 220 В гасится за счет реактивного сопротивления конденсаторов (Хс) на частоте 50 Гц, что позволяет уменьшить габариты зарядного устройства.
Используя эту электрическую схему и зная рекомендуемый для конкретного типа аккумуляторов ток заряда (1з), по приводимым ниже формулам можно определить емкость конденсаторов С1, С2 (суммарную С=С1+С2) и выбрать по справочнику тип стабилитрона VD2 так, чтобы напряжение его стабилизации превышало напряжение заряженных аккумуляторов примерно на 0,7 В.
Тип стабилитрона зависит только от количества одновременно заряжаемых аккумуляторов, так, например, для заряда трех элементов Д-0,26 или НКГЦ-0,45 необходимо применять стабилитрон VD2 типа КС456А. Пример расчета приведен для аккумуляторов Д-0,26 с зарядным током 26 мА.
В зарядном устройстве применяются резисторы типа МЛТ или С2-23, конденсаторы С1 и С2 типа К73-17В на рабочее напряжение 400 В. Резистор R1 может иметь номинал 330...620 кОм (он обеспечивает разряд конденсаторов после отключения устройства).
Светодиод HL1 можно использовать любой, при этом подобрав резистор R3 так, чтобы он светился достаточно ярко. Диодная матрица VD1 заменяется четырьмя диодами КД102А.
Рис.5.12.
Топология печатной платы с расположением элементов показана на рис. 5.12. Плата односторонняя (без отверстий), и элементы устанавливаются со стороны печатных проводников.
При использовании элементов, указанных на схеме, зарядное устройство легко устанавливается в корпусе от блоков питания для карманных микрокалькуляторов (рис. 5.13) или же может размещаться внутри корпуса устройства, где установлены аккумуляторы.
Рис. 5.13. Корпус зарядного устройства
Индикация наличия напряжения в цепи заряда осуществляется светодиодом HL1, который размещается на видном месте корпуса. Диод VD3 позволяет предохранить разряд аккумуляторов через цепи зарядного устройства при отключении его от сети 220 В. При заряде аккумуляторов НКГЦ-0,45 током 45 мА резистор R3 необходимо уменьшить до величины, при которой светодиод светится полной яркостью.
Проверку зарядного устройства лучше проводить при подключении вместо аккумуляторов измерительных приборов и эквивалентной нагрузки (рис. 5.14), минимальная величина которой для четырех аккумуляторов определяется по закону Ома:
R = U/I = 4/0,026 =150 Ом, где
U - напряжение на разряженных аккумуляторах (у основной массы аккумуляторов эта величина составляет один вольт на элемент).
Рис. 5.14. Эквивалентная нагрузка для настройки зарядного устройства
При пользовании зарядным устройством необходимо следить за временем, так как приведенная схема хотя и снижает вероятность получения аккумулятором избыточного заряда (за счет ограничения напряжения стабилитроном), однако полностью такой возможности, при очень большом времени заряда, не исключает. А если у вас нет проблем с памятью, то это простое и малогабаритное устройство поможет сэкономить деньги.
Вторая схема бестрансформаторного зарядного устройства (рис. 5.15) предназначена для одновременного заряда двух аккумуляторов типа НКГЦ-0,45 (НКГЦ-0,5). Здесь обеспечивается асимметричный режим заряда, что позволяет продлить срок службы аккумуляторов. Заряд производится током 40...45 мА в течение одной полуволны сетевого напряжения. В течение второй полуволны, когда соответствующий диод закрыт, элемент G1 (G2) разряжается через резистор R4 (R5) током 4,5 мА.
Рис. 5.15
Заряд аккумуляторов G1 и G2 происходит поочередно, так, например, в течение положительной полуволны заряжается G1 (G2 — разряжается). Такое построение схемы позволяет осуществлять процесс заряда аккумуляторов в независимости друг от друга, и любая неисправность одного из них не нарушит заряд другого.
Для индикации наличия сетевого напряжения в схеме используется миниатюрная лампа HL1 типа СМН6.3-20 или аналогичная. Аккумуляторы нельзя оставлять подключенными к схеме надолго без включения зарядного устойства в сеть, так как при этом происходит их разряд через резисторы R4, R5.
При правильной сборке устройства настройка не требуется.
Рис. 5.16. Электрическая схема блока питания с автоматическим зарядным устройством
Схема, показанная на рис. 5.16, в отличие от вышеприведенных, исключает повреждение аккумуляторов иза получения ими избыточного заряда. Она автоматически отключает процесс заряда при повышении напряжения на элементах выше допустимой величины и состоит из стабилизатора тока на транзисторе VT2, усилителя VT1, детектора уровня напряжения на VT3 и стабилизатора напряжения D1.
Устройство может использоваться и как источник питания на ток до 100 мА при подключении нагрузки к контактам 1 и 2 штекера Х2.
Индикатором процессазаряда является свечение светодиода HL1, который при его окончании гаснет.
Настройку устройства начинаем со стабилизатора тока. Для этого временно замыкаем базу транзистора VT3 на общий провод, а вместо аккумуляторов подключаем эквивалентную нагрузку с миллиамперметром 0...100 мА. Контролируя прибором ток в нагрузке, подбором резистора R3 устанавливаем номинальный ток заряда для конкретного типа аккумуляторов.
Вторым этапом настройки является установка уровня ограничения выходного напряжения с помощью подстроечного резистора R5. Для этого, контролируя напряжение на нагрузке, увеличиваем сопротивление нагрузки до момента появления максимально допустимого напряжения (5,8 В для четырех аккумуляторов Д-0,26). Резистором R5 добиваемся отключения тока в нагрузке (погаснет светодиод).
При изготовлении устройства можно использовать корпус от источника питания БП2-3 или аналогичный (от него же удобно взять и трансформатор). Трансформатор подойдет любой малогабаритный с напряжением во вторичной обмотке 12...16 В.
Транзистор VT2 крепится к теплорассеивающей пластине. Конденсаторы С1 применяются типа К50-16-25В, С2—типа К50-16-16В. Для удобства настройки в качестве R5 желательно использовать многооборотный резистор типа СП5-2 или аналогичный, остальные резисторы подойдут любого типа.
От источника питания можно получить напряжения 6 или 9 В, если на место микросхемы D1 установить соответственно КР142ЕН5Б (Г) или КР142ЕН8А (Г).
5.6. БЛОК ПИТАНИЯ С АВТОМАТИЧЕСКИМ ЗАРЯДНЫМ УСТРОЙСТВОМ НА КОМПАРАТОРЕ
Блок питания предназначен для питания от сети 220 В напряжением 4 В маломощной нагрузки (током не более 100 мА) и подзаряда трех аккумуляторов типа НКГЦ-0,45 или НКГЦ-0,5 с автоматическим выключением режима заряда.
Когда блок включен в сеть, при наличии напряжения загорается зеленый светодиод. Процесс заряда аккумуляторов контролируется по свечению красного светодиода (при этом переключатель SA1 должен быть включен). Пока идет процесс заряда, он будет постоянно гореть, а при окончании заряда светодиод начинает мигать и интервал его свечения будет меньше, чем пауза,
Схема (рис. 5.17) автоматически следит за процессом заряда и исключает повреждение аккумуляторов. Если блок используется только для питания устройства, то зарядное устройство можно отключать переключателем SA1.
По сравнению с аналогичными по назначению схемами, опубликованными в литературе, данная содержит меньше радиоэлементов и проще в изготовлении.
Необходимое выходное напряжение источника питания устанавливается резистором R2. Настройка устройства проводится для установки тока заряда 45 мА резистором R4 из ряда 15, 18, 20 Ом.
Для настройки вместо аккумуляторов к контактам Х2/3 и Х2/2 подключается резистор 68 Ом мощностью не менее 1 Вт последовательно с миллиамперметром. При этом светодиод HL2 должен постоянно гореть. После выполнения этой операции проверяется работа компаратора DA2. Для чего к контактам Х2/3 и Х2/2 следует подключить резистор 150 Ом (0,5 Вт) параллельно с осциллографом.
Рис.5.17
Диаграмма напряжения при этом должна иметь вид, приведенный на рис. 5.18. Минимальное напряжение на диаграмме задается соотношением резисторов R8 и R9.
Рис. 5.18. Диаграмма напряжении на выходе Х2/3
Конструктивно блок питания выполнен на односторонней печатной плате, размещенной в корпусе от стандартного источника типа БП2-3, предназначенного для питания микрокалькуляторов. От этого же источника взят и сетевой трансформатор типа Т8-220-50. При использовании трансформатора другого типа его вторичная обмотка должна быть рассчитана на напряжение 12...15 В при токе нагрузки 200 мА. Светодиоды HL1 и HL2 крепятся на верхней крышке корпуса клеем. Штекер Х1 выполнен на основании корпуса, а Х2 соединен с корпусом проводом длиной около 1 м.
Внутри корпуса к транзистору VT1 крепится теплорассеивающая пластина. Применяемые резисторы могут быть любого типа, конденсаторы С1...СЗ — типа К50-16 или аналогичные малогабаритные, микропереключатель SA1 — типа ПД-9-2. Транзистор VT1 можно заменить на КТ814Б.
При использовании указанных выше деталей габариты всего устройства не превышают 60х60х50 мм (рис 5.19).
Рис. 5.19. Внешний вид устройства
Для заряда аккумуляторных элементов другого типа или большего их количества необходимо выставить соответствующий номинальный ток заряда (R4), верхний (R2) и нижний порог (R8) срабатывания компаратора.
5.7. СИГНАЛИЗАТОРЫ РАЗРЯДА ЭЛЕМЕНТОВ ПИТАНИЯ
Рис. 5.20. Световой индикатор
Известно, что разряд аккумулятора до уровня напряжения ниже допустимого для каждого конкретного типа'приводит к снижению его ресурса или может совсем повредить его. Чтобы этого не произошло, необходимо периодически контролировать напряжение на аккумуляторе, что неудобно, учитывая, что для этого необходимо иметь вольтметр.
В журналах неоднократно публиковались схемы сигнализаторов уровня напряжения, однако предлагаемые в данной статье устройства имеют меньше деталей и отличаются малым потреблением.
В основе построения приведенных ниже схем применен индикатор уровня напряжения на транзисторе (VT1) работающем в режиме микротоков. При этом у транзистора очень большой коэффициент усиления и при изменении напряжения питания на 0,1 В он переключается из запертого состояния в открытое.
Рис. 5.21. Звуковой индикатор
На рис. 5.20 приведена схема, которая позволяет показать (по свечению светодиода HL1) снижение ниже допустимой нормы уровня напряжения на элементах питания. Светодиод может быть любого типа. Уровень напряжения, при котором срабатывает сигнализатор, настраивается резистором R2 (удобнее использовать многооборотный, типа СП5-2).
Но иногда лучше иметь звуковую сигнализацию, так как свечение светодиода можно вовремя и не заметить.
Рис. 5.22. Топология печатной платы звукового индикатора (пьезоизлучатель устанавливается со стороны печатных проводников над платой)
На рис. 5.21 приведена схема звукового сигнализатора на пьезоизлучателе HF1 (ЗП-1 или любом аналогичном). Уровень контролируемого напряжения может быть от 2 до 30 В, но при использовании схемы с напряжением более 9 В необходимо подобрать величину резистора R5, для того чтобы схема, при достаточной громкости звука пьезоизлучателя, в режиме сигнализации потребляла ток не более 1... 2 мА. Частота звука зависит от конденсатора С1, и ее можно изменить.
Катушка L1 содержит 600 витков провода ПЭВ диаметром 0,08 мм (0,1 или 0,12 мм), намотанных на склеенных клеем двух кольцах типоразмера К10х6х3 мм из феррита 600НМ1 или 1000НМ1. Топология печатной платы показана на рис. 5.22 .
5.8. ОБЗОР СХЕМ ВОССТАНОВЛЕНИЯ ЗАРЯДА У БАТАРЕЕК
Проблема повторного использования гальванических элементов питания давно волнует любителей электроники. В технической литературе неоднократно публиковались различные методы "оживления" элементов, но, как правило, они помогали только один раз, да и ожидаемой емкости не давали.
В результате экспериментов удалось определить оптимальные токовые режимы регенерации и разработать зарядные устройства, пригодные для большинства элементов. При этом они обретали первоначальную емкость, а иногда и несколько превосходящую ее.
Восстанавливать нужно элементы, а не батареи из них, поскольку даже один из последовательно соединенных элементов батареи, пришедший в негодность (разряженный ниже допустимого уровня) делает невозможным восстановление батареи.
Что касается процесса зарядки, то она должна проводиться асимметричным током с напряжением 2,4...2,45 В. При меньшем напряжении регенерация весьма затягивается и элементы после 8...10 часов не набирают и половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность.
Перед началом зарядки элемента необходимо провести его диагностику, смысл которой состоит в определении способности элемента выдерживать определенную нагрузку. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1 В. (Элемент с меньшим напряжением непригоден к регенерации.) Затем нагружают элемент на 1...2 секунды резистором 10 Ом, и, если напряжение элемента упадет не более чем на 0,2 В, он пригоден к регенерации.
Электрическая схема зарядного устройства, приведенная на рис. 5.23 (предложил Б. И. Богомолов), рассчитана на зарядку одновременно шести элементов (G1...G6 типа 373, 316, 332, 343 и других аналогичных им).
Рис. 5.23
Самой ответственной деталью схемы является трансформатор Т1, так как напряжение во вторичной обмотке у него должно быть строго в пределах 2,4...2,45 В независимо от количества подключенных к нему в качестве нагрузки регенерируемых элементов.
Если готового трансформатора с таким выходным напряжением найти не удастся, то можно приспособить уже имеющийся трансформатор мощностью не менее 3 Вт, намотав на нем дополнительно вторичную обмотку на нужное напряжение проводом марки ПЭЛ или ПЭВ диаметром 0,8.,.1,2 мм. Соединительные провода между трансформатором и зарядными цепями должны быть возможно большего сечения.
Продолжительность регенерации 4...5, а иногда и 8 часов. Периодически тот или иной элемент надо вынимать из блока и проверять его по методике, приведенной выше для диагностики элементов, а можно следить с помощью вольтметра за напряжением на заряжаемых элементах и, как только оно достигнет 1,8...1,9 В, регенерацию прекратить, иначе элемент может перезарядиться и выйти из строя. Аналогично поступают в случае нагрева какого-либо элемента.
Лучше всего восстанавливаются элементы, работающие в детских игрушках, если ставить их на регенерацию сразу же после разряда. Причем такие элементы, особенно с цинковыми стаканами, допускают многоразовую регенерацию. Несколько хуже ведут себя современные элементы в металлическом корпусе.
В любом случае, главное для регенерации не допускать глубокого разряда элемента и вовремя ставить его на подзарядку, так что не спешите выбрасывать отработанные гальванические элементы.
Вторая схема (рис. 5.24) использует тот же принцип подзарядки элементов пульсирующим ассимметричным электрическим током. Она предложена С. Глазовым и проще в изготовлении, так как позволяет использовать любой трансформатор с обмоткой, имеющей напряжение 6,3 В. Лампа накаливания HL1 (6,3 В; 0,22 А) выполняет не только сигнальные функции, но и ограничивает зарядный ток элемента, а также предохраняет трансформатор в случае коротких замыканий в цепи зарядки.
Рис. 5.24
Стабилитрон VD1 типа КС119А ограничивает напряжение заряда элемента. Он может быть заменен набором из последовательно включенных диодов - двух кремниевых и одного германиевого - с допустимым током не менее 100 мА. Диоды VD2 и VD3 — любые кремниевые с тем же допустимым средним током, например КД102А, КД212А.
Емкость конденсатора С1 — от 3 до 5 мкФ на рабочее напряжение не менее 16В. Цепь из переключателя SA1 и контрольных гнезд Х1, Х2 для подключения вольтметра. Резистор R1 — 10 Ом и кнопка SB1 служат для диагностики элемента G1 и контроля его состояния до и после регенерации.
Нормальному состоянию соответствует напряжение не менее 1,4 В и его уменьшение при подключении нагрузки не более чем на 0,2 В.
О степени заряженности элемента можно также судить по яркости свечения лампы HL1. До подключения элемента она светится примерно в полнакала. При подключении разряженного элемента яркость свечения заметно увеличивается, а в конце цикла зарядки подключение и отключение элемента почти не вызывает изменения яркости.
При подзарядке элементов типа СЦ-30, СЦ-21 и других (для наручных часов) необходимо последовательно с элементом включать резистор на 300...500 Ом. Элементы батареи типа 336 и других заряжаются поочередно. Для доступа к каждому из них нужно вскрыть картонное донышко батареи.
Рис. 5.25
Если требуется восстановить заряд только у элементов питания серии СЦ, схему для регенерации можно упростить, исключив трансформатор (рис. 5.25).
Работает схема аналогично вышеприведенным. Зарядный ток (1зар) элемента G1 протекает через элементы VD1, R1 в момент положительной полуволны сетевого напряжения. Величина Iзар зависит от величины R1. В момент отрицательной полуволны диод VD1 закрыт и разряд идет по цепи VD2, R2. Соотношение Iзар и Iразр выбрано 10:1. У каждого типа элемента серии СЦ своя емкость, но известно, что величина зарядного тока должна составлять примерно десятую часть от электрической емкости элемента питания. Например, для СЦ-21 — емкость 38 мА-ч (Iзар=3,8 мА, Iразр=0,38 мА), для СЦ-59 — емкость 30 мА-ч (Iзар=3 мА, Iразр=0,3 мА). На схеме указаны номиналы резисторов для регенерации элементов СЦ-59 и СЦ-21, а для других типов их легко определить, воспользовавшись соотношениями: R1=220/2·lзap, R2=0,1·R1.
Установленный в схеме стабилитрон VD3 в работе зарядного устройства участия не принимает, но выполняет функцию защитного устройства от поражения электрическим током — при отключенном элементе G1 на контактах Х2, ХЗ напряжение не сможет возрасти больше, чем уровень стабилизации. Стабилитрон КС175 подойдет с любой последней буквой в обозначении или же может быть заменен двумя стабилитронами типа Д814А, включенными последовательно навстречу друг другу ("плюс" к "плюсу"). В качестве диодов VD1, VD2 подойдут любые с рабочим обратным напряжением не менее 400 В.
Рис. 5.26
Время регенерации элементов составляет 6...10 часов. Сразу после регенерации напряжение на элементе будет немного превышать паспортную величину, но через несколько часов установится номинальное — 1,5 В.
Восстанавливать таким образом элементы СЦ удается три-четыре раза, если их ставить вовремя на подзарядку, не допуская полного разряда (ниже 1В).
Аналогичный принцип работы имеет схема, показанная на рис. 5.26. Она в особых пояснениях не нуждается.